Lumiprobe Sulfo-Cyanine7 NHS ester
Sulfo-Cyanine7 NHS ester是水溶近红外染料sulfo-Cyanine7,是胺类活性琥珀酸亚胺酯。
Sulfo-Cyanine7是Cy7®荧光团的的改良衍生物,量子产率提高20%,并具有更好的耐光性。该染料尤其适用于NIR成像应用。
近红外荧光染料利用了生物组织在特定的波长范围里的透明度。这种方法是无损伤性的,并允许在活体内对多种已标记的生物分子的分布进行跟踪。
Sulfo-Cyanine7 NHS ester可以很轻松的标记生物分子,如:蛋白质。标记的分子可以用于后续多种研究及药物开发相关的实验。
这种染料有很高的水溶解度,尤其适用于痕量蛋白质和易变性蛋白质的标记。需有机溶剂才能溶解的非磺化的Cyanine7 NHS ester。
订购货号 | 产品名称及规格 | 价格(¥) |
15320 | Sulfo-Cyanine7 NHS ester, 1 mg | 2080.00 |
25320 | Sulfo-Cyanine7 NHS ester, 5 mg | 5330.00 |
45320 | Sulfo-Cyanine7 NHS ester, 25 mg | 11050.00 |
55320 | Sulfo-Cyanine7 NHS ester, 50 mg | 19500.00 |
65320 | Sulfo-Cyanine7 NHS ester, 100 mg | 31850.00 |
General properties
Appearance: | dark green powder |
Molecular weight: | 827.94 |
Molecular formula: | C41H46N3NaO10S2 |
Solubility: | good in water, DMF, DMSO |
Quality control: | NMR 1H (95%) and 13C, TLC, functional testing |
Storage conditions: | Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate. |
MSDS: | Download |
Spectral properties
Excitation maximum, nm: | 740 |
Extinction coefficient at excitation maximum, Lmol-1cm-1: | 240600 |
Emission maximum, nm: | 773 |
CF260: | 0.04 |
CF280: | 0.04 |
Product citations
- Ayala-Orozco, C.; Liu, J.G.; Knight, M.W.; Wang, Y.; Day, J.K.; Nordlander, P.; Halas, N.J. Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14(5), 2926-2933. doi: 10.1021/nl501027j
- Brand, C.; Abdel-Atti, D.; Zhang, Y.; Carlin, S.; Clardy, S.M.; Keliher, E.J.; Weber, W.A.; Lewis, J.S.; Reiner, T. In Vivo Imaging of GLP-1R with a Targeted Bimodal PET/Fluorescence Imaging Agent. Bioconjugate Chemistry, 2014, 25(7), 1323-1330. doi:10.1021/bc500178d
- Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
- Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X.; Yu, F.; Wang, H. Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and “On-Demand” Antibiotic Delivery. ACS Nano, 2014, 8(5), 4975-4983. doi: 10.1021/nn501040h
- Viehweger, K.; Barbaro, L.; García, K.P.; Joshi, T.; Geipel, G.; Steinbach, J.; Stephan, H.; Spiccia, L.; Graham, B. EGF Receptor-Targeting Peptide Conjugate Incorporating a Near-IR Fluorescent Dye and a Novel 1,4,7-Triazacyclononane-Based 64Cu(II) Chelator Assembled via Click Chemistry. Bioconjugate Chemistry, 2014, 25(5), 1011-1022. doi: 10.1021/bc5001388
- Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.-R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI.Biomaterials, 2013, 34(31), 7683-7693. doi: 10.1016/j.biomaterials.2013.06.057
- Zou, C.; Loka, R.S.; Zhang, Y.; Cairo, C.W. Glycoform Remodeling Generates a Synthetic T Cell Phenotype. Bioconjugate Chemistry, 2013, 24(6), 907-914. doi: 10.1021/bc300599w
- Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chemical Science, 2015. doi: 10.1039/c4sc03549f
- Aldeek, F.; Hawkins, D.; Palomo, V.; Safi, M.; Palui, G.; Dawson, P.E.; Alabugin, I.V.; Mattoussi, H. UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. Journal of the American Chemical Society, 2015. doi: 10.1021/ja512802x
- Hsueh, P.-Y.; Edman, M.C.; Sun, G.; Shi, P.; Xu, S.; Lin, Y.-a.; Cui, H.; Hamm-Alvarez, S.F.; MacKay, J.A. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. Journal of Controlled Release, 2015. doi: 10.1016/j.jconrel.2014.12.017
- Wen, A.M.; Infusino, M.; De Luca, A.; Kernan, D.L.; Czapar, A.E.; Strangi, G.; Steinmetz, N.F. Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26(1), 51–62. doi: 10.1021/bc500524f